Let X1, . . . , Xn be independent random

Let X1, . . . , Xn be independent random variables each uniformly distributed on [−1, 1]. Let pn = P(X21 + · ·   + X2n < 1). Conduct a simulation study to approximate pn for increasing values of n. For n = 2, p2 is the probability that a point uniformly distributed on the square [−1, 1] × [−1, 1] falls in the inscribed circle of radius 1 centered at the origin. For n = 3, p3 is the probability that a point uniformly distributed on the cube [−1, 1] × [−1, 1] × [−1, 1] falls in the inscribed sphere of radius 1 centered at the origin. For n > 3, you are in higher dimensions estimating the probability that a point in a “hypercube” falls within the inscribed “hypersphere.” What happens when n gets large?

 

Leave a Comment

Your email address will not be published. Required fields are marked *

GradeEssays.com
We are GradeEssays.com, the best college essay writing service. We offer educational and research assistance to assist our customers in managing their academic work. At GradeEssays.com, we promise quality and 100% original essays written from scratch.
Contact Us

Enjoy 24/7 customer support for any queries or concerns you have.

Phone: +1 213 3772458

Email: support@gradeessays.com

© 2024 - GradeEssays.com. All rights reserved.

WE HAVE A GIFT FOR YOU!

15% OFF 🎁

Get 15% OFF on your order with us

Scroll to Top