For a multinomial distribution, let γ = ∑i bi πi, and suppose that πi = fi(θ) > 0, i = 1,…, I. For sample proportions {pi}, let S = ∑i bi pi. Let T = ∑i bi π̂i, where π̂i = fi(θ̂), for the ML estimator θ̂ of θ.
a. Show that var(S) = [ ∑i bi2 πi – (∑i bi πi)2]/n.
b. Using the delta method, show var(T) ≈ [var(θ̂)][∑i bi fi’(θ)]2.
c. By computing the information for L(θ) = ∑i ni log[fi(θ)], show that var(θ̂) is approximately [n∑i (fi’(θ))2/fi(θ)]–1.
d. Asymptotically, show that var[√n (T – γ)] ≤ var [√n (S – γ)]. [Show that var(T)/var(S) is a squared correlation between two random variables, where with probability πi the first equals bi and the second equals fi’(θ)/fi(θ).]