An object is propelled upward at an angle θ, 45°

An object is propelled upward at an angle θ, 45° < θ < 90°, to the horizontal with an initial velocity of υ0 feet per second from the base of a plane that makes an angle of 45°with the horizontal. See the illustration. If air resistance is ignored, the distance R that it travels up the inclined plane is given by the function

(a) Show that

(b) In calculus, you will be asked to find the angle θ that maximizes R by solving the equation

sin(2θ) + cos(2θ) = 0

Solve this equation for u.

(c) What is the maximum distance R if υ0 = 32 feet per second?

(d) Graph R = R(θ), 45° ≤ θ ≤ 90°, and find the angle θ that maximizes the distance R. Also find the maximum distance. Use υ0 = 32 feet per second. Compare the results with the answers found earlier.

 

Leave a Comment

Your email address will not be published. Required fields are marked *

GradeEssays.com
We are GradeEssays.com, the best college essay writing service. We offer educational and research assistance to assist our customers in managing their academic work. At GradeEssays.com, we promise quality and 100% original essays written from scratch.
Contact Us

Enjoy 24/7 customer support for any queries or concerns you have.

Phone: +1 213 3772458

Email: support@gradeessays.com

© 2024 - GradeEssays.com. All rights reserved.

WE HAVE A GIFT FOR YOU!

15% OFF 🎁

Get 15% OFF on your order with us

Scroll to Top